What Monitors Can and Can’t Tell You: re-world monitoring for field and high volume anesthesia

Emily McCobb DVM MS DACVAA
Tufts Shelter Medicine Program
Cummings School of Veterinary Medicine
Tufts University

Pet Smart Charities
National Spay Neuter Conference
August 15, 2014
Tufts Program: Lerner Spay Clinic

• JR spay dogs
 – (low volume, intensely monitored)

• Senior Surgery Elective
 – 15 surgeries per day

• HQ/HV clinic on Fridays
 – “High volume”: 20-30 surgeries

• Sunday Community Cats
 – 60 to 80 cats

• Rotation in Pediatric Spay Neuter
Outline

• Importance of monitoring
• Parameters to monitor:
 – Depth
 – Cardiovascular System
 – Respiratory System
 – Temperature
• How we monitor them
• Limitations and Problems
What tools do you have?

- Stethoscope
- Esophageal Stethoscope
- Pulse Oximeter
- EKG
- Blood Pressure
- Capnograph

What do you find most useful?
What is the standard of care?

• ACVA guidelines
 - www.acva.org

• ASV guidelines for high volume spay neuter
 - www.sheltervet.org
Monitoring Guidelines

- Must monitor: depth, circulation, oxygenation, ventilation, temperature

- Does not necessarily require specialized equipment

- Monitor every five minutes, record at least every ten (AAHA)
Doesn’t have to be fancy…
Why monitor?

- Prevent anesthetic related morbidity and mortality
- Address trends in parameters before animal’s condition deteriorates
- Understand affect of anesthetic on our patient

Ultimate goal: ensure optimum anesthetic depth with minimal physiologic impairment
Assessment of anesthetic actions

• General Anesthesia:
 – Unconsciousness
 – Insensitivity to pain
 – Muscle relaxation
 – Absence of reflex responses
Who should monitor the patient?

- Responsible individual (doctor or technician) should be aware of the patient’s status at all times during anesthesia & recovery.

- Be prepared to intervene when indicated or alert the veterinarian in charge of changes in the patient’s condition.

- If responsible person can not be with the patient continually they should check the patient every five minutes and audible monitors should be used.
Monitors

• Ongoing, automatic, audible monitors of organ function are mainstay
• Single point in time measurement is meaningful when extremely abnormal
• Generally measurements are only meaningful in the context of trends

• But monitors have limitations
Alarm Fatigue
Safe Monitor Use
Safe Monitor Use

• FDA Guidelines:
 – Understand how the monitor works
 – Know what symbols and alarms mean
 – Always check the patient if the monitor alarms
Record Keeping and Monitoring

- **Anesthesia Record:**
 - Document affects of anesthetic drugs on patient
 - Plan future anesthesia based on prior patient response
 - In event of anesthetic related arrest allows sequence of perioperative events to be reviewed

- Abbreviated in high volume setting
What to record

• Species/breed/age/gender/wt/physical status
• Procedure
• All agents administered with dose in mg
• Duration of anesthesia
• Supportive measures
• Difficulties encountered and means of correction
• Vital readings?
What to Monitor

- Depth
- Circulation
- Oxygenation/Ventilation
- Temperature
Patient Depth

• Why does it matter?
Why do we care about patient depth?

- **Too light:**
 - Awareness
 - Recall
 - Pain
 - Movement

- **Too deep:**
 - Hypoventilation
 - Hypoxemia
 - Reduced cardiac output
 - Hypotension
 - Inadequate tissue perfusion
 - Hypothermia
 - Prolonged recovery
Depth of Anesthesia

- Can be particularly difficult to assess:
 - Anesthetic drugs that induce adequate anesthesia in one species or operation may not be sufficient in another species/situation
 - Signs characterizing a continuum of progressive increases in CNS depression and analgesia may not occur with some drugs and drug combinations
Depth of Anesthesia

- **Examples of difficulties:**
 - Ketamine: will not see ocular signs of increasing CNS depression (central pupil)
 - Jaw tone also maintained
 - Propofol: not analgesic at any concentration
Anesthetic Level

• Balance between amount of anesthetic administered and surgical stimulation (wakens patient)

• Patient’s requirements change over time (generally decrease)

• Anesthetic should be given “to effect”
Stages of General Anesthesia

• Describe levels of CNS depression
• Not necessarily distinct but blend from one to the next
• Actual responses can vary between patients and patient condition
• Classically associated with inhalant anesthesia
Stages of Anesthesia

• Modified by:
 – Pre-anesthetic medication
 – Adequacy of oxygenation
 – Carbon dioxide retention
 – Patient physical status and temperament
 – Anesthetic administered and rate of induction
Stage I: Voluntary Movement

- From initial administration of agent to loss of consciousness
- Most variable stage
- May be prolonged or more dramatic if animal is nervous or excited
- Epinephrine release can cause pupil dilation, and tachycardia
- May also see salivation, urination, defecation
- As stage II approaches: patient becomes ataxic, loses ability to stand and assumes lateral recumbency
Stage II: involuntary movement

- From loss of consciousness to onset of regular pattern of respiration
- CNS depression leads to exaggerated reflex responses (tachypnea v. breath holding, tachycardia, dilated pupils, brisk palpebral reflexes)
- Vomiting can occur and larynx (particularly in cats) can be very sensitive
- Stimulation of any kind should be avoided
Stage III: Surgical Anesthesia

- Unconsciousness with progressive depression of reflexes
- Muscle relaxation develops, vomiting and swallowing reflexes are lost, ventilation becomes slow and regular
- Progressive weakening of intercostal muscles and diaphragm
- Usually divided into planes (light, medium, deep)
- “Median depth” is light surgical plane
Planes of Surgical Anesthesia

• Light: until eyeball movement ceases
• Medium: light plane of surgical anesthesia
 – Stable respiration and pulse rate, abolished laryngeal reflexes, sluggish palpebral, strong corneal, muscle relaxation
• Deep:
 – Diaphragmatic respiration, profound muscle relaxation, weak corneal reflex, central, dilated pupil (too deep!)
Stage IV: Severe CNS Depression

- Respirations cease
- Blood pressure at shock levels
- Relaxed sphincters, dilated pupils
- Marked delay in CRT
- Death ensues without resuscitation
Monitoring Depth

- Ocular Signs
 - Can be variable
- Jaw tone
 - Not always useful
- Vital Signs
Ocular Signs of Anesthesia

- Eye ball position and movement
- Photomotor reflexes
- Pupillary size
- Lacrimation
- Palpebral, corneal, and conjunctival reflexes

Testing palpebral
Ocular Signs

- For dogs and cats at a light plane, the eyes are generally turned down and towards the nose.
- Eyelids are closed and third eyelids are elevated.
- Palpebral reflex sluggish at a surgical plane.
- Pupillary size: altered by medications but generally are dilated, constricted, dilated.
- No pupillary light reflex at a medium plane.
- No corneal reflex at deeper planes in dogs and cats.
Light Surgical Plane
Mandibular muscle tone

- Lots
- Some
- None

- Within context of the species and breed
- Not reliable in puppies
Other Signs

• Progressive decline in muscle tone
• Pedal reflex, ear pinch
• Loss of swallowing and vomiting reflex
Vital Signs

- Sudden change in heart rate or respiratory rate or blood pressure
 - *May* indicate a change in anesthetic depth
 - Usually trend upwards with a light plane and downwards with a deep plan
 - Not reliable predictors
Cardiovascular System

• Circulation:
 – Indirectly monitored:
 • pulse rate and quality
 • CRT
 • Bleeding at surgical site
 – Directly monitored:
 • Blood pressure
Circulation

- **Objective:** ensure adequate blood flow to tissues
- **Methods:**
 - Palpation of peripheral pulse
 - Palpation of heartbeat through chest wall
 - Auscultation of heartbeat
 - Electrocardiogram (continuous)
 - Pulse oximeter
 - Non-invasive blood pressure monitor
 - Invasive blood pressure monitoring
Pulses
Circulatory Monitoring

Stethoscope
Circulatory Monitoring

Esophageal Stethoscope
EKG

• Continuous monitoring of heart rate and rhythm

• Limited to electrical activity only

• May not reflect tissue perfusion
Cardiovascular Monitoring

• Heart Rate
 – What is acceptable?

• Heart rate is too slow (bradycardia) when associated with low cardiac output, hypotension or poor tissue perfusion

• Tachycardia: generally a sign of an underlying problem
 – can decrease cardiac output
 – can increase myocardial oxygen consumption
Causes of Bradycardia

- Anesthetic Overdose
- Opioids
- A_2-Agonists
- Excessive vagal tone
- Hypothermia
- Hyperkalemia
- Sick sinus syndrome
- AV block
- Metabolic failure
- Hypoxia
Causes of Tachycardia

- Anesthesia too light
- Ketamine
- Parasympatholytics
- Sympathomimetics
- Hypovolemia
- Hyperthermia
- Hypoxemia
- Hypercapnia
- Hypoglycemia
- Individual variation
- SVT
- Pain
- Pheochromocytoma
Arrhythmias

- Sinus Bradycardia
- AV block
- Bundle Branch Block
- Sinus tachycardia
- Ventricular arrhythmias
 - Treat when tachycardic, multiform or R on T
Vasomotor Tone

• Regulates perfusion

• Vasodilation
 – improves perfusion
 – lowers blood pressure
 – causes: systemic inflammatory response, drugs, hyperthermia (isoflurane, acepromazine)

• Vasoconstriction
 – impairs perfusion,
 – raises blood pressure
 – causes: hypovolemia, heart failure, hypothermia, vasoconstrictors (dexmedetomidine)
Arterial Blood Pressure

• Primary determinant of cerebral and coronary perfusion

• Maintain MAP above 60 mm Hg but below 140 mm Hg

• Subjective assessment of pulse quality reflects pulse pressure, not blood pressure (relates to stroke volume)
Indirect Blood Pressure Measurement

• Sphygmomanometry
 – Occlusive cuff applied over an artery
 – Cuff should be 40% of circumference of the limb
 – Doppler ultrasound is used to hear the pulse
 – Reading typically recorded as the systolic blood pressure
Indirect Blood Pressure Measurement

- **Oscillometry**
 - Analyzes fluctuation of pressure in the cuff as it is slowly deflated
 - Provides a digital display of systolic, diastolic and mean blood pressures and heart rate
 - Small patients and motion cause errors
Interpreting Indirect Blood Pressure

- All methods under estimate systolic blood pressure in cats
- All methods are least accurate when vessels are small, when blood pressure is low and when the vessels are constricted
- In general, indirect methods are good for monitoring trends in your patient but may be less accurate than direct methods
Respiratory System

• Oxygenation and ventilation

• Indirect monitoring:
 – Rate and depth of breathing
 – Depends on respiratory threshold to stimulation
 • Decreased by barbiturates and opioids
 • Increased by surgical stimulation
Oxygenation

- **Objective:** ensure adequate oxygenation of arterial blood
- **Methods:**
 - Observe mm color
 - Pulse oximetry
 - Blood-gas analysis

Dog is very pink!
Ventilation

- **Objective:** enhance recognition of trends in monitored parameters, ensure adequate
- **Methods:**
 - Observe chest wall movement
 - Observe breathing bag movement
 - Ascultation of breath sounds
 - Audible respiratory monitor
 - Capnography
 - Blood–gas monitoring
Respiratory Monitoring

• Baseline respiratory rate can vary widely
• Change in respiratory rate can indicate a change in patient status
 – Bradypnea
 – Tachypnea: not necessarily that anesthesia is too light
• Normal tidal volume: 8-20 ml/kg
Capnography

- ET PCO_2 generally 2-4 mm Hg lower than PaCO_2
- Useful to detect hypoventilation
- Also sensitive detection of change in patient status
- Detection of equipment failure
Pulse Oximetry

- Approximates oxyhemoglobin saturation
- Measures red light absorption of pulsatile arterial blood
- Sources of error: scatter, differential tissue absorption, small pulse pressure, pigmented tissue, motion
- Preferred monitor: automatic, continuous, audible monitor of cardiopulmonary function
- **Ideal for high volume setting**
Pulse Oximetry

- Should be 100%
- Low values or errors can indicate problem
- Not solely hypoxemia
- Reduced perfusion
 - vasoconstriction
 - too deep
 - too cold
- Very Sensitive
Temperature

- Hypothermia is common
- Temperature should be maintained above 96° F
- Below this level anesthetic requirements are reduced and metabolic function can be disrupted
- Minimize intra-operative heat loss
- Hyperthermia/Malignant Hyperthermia
Temperature Monitoring

• Esophageal or rectal thermistors attached to a continuously displayed thermometer

• Digital thermometer

• Temp checks post
When do we stop monitoring?

- Continuous attention until extubation
- Periodic checks throughout recovery
How do we know patient is ok?

- Not too deep (or too light)
- MM pink, CRT below 2 sec
- Reg RR with no effort
- Easy to auscult heart and pulse palpates strong
- Temp ok
If monitor alarms?

• First, check patient:
 – Listen to heart
 – Feel pulse

• Once confident patient is doing well then trouble shoot monitor
Signs of a problem

- Patient not acting like they normally do
- Hard time keeping them asleep
- Lots of respiratory effort
- Pulse ox alarming or pulse is hard to feel
- Heart sounds far away
- Sudden drop in ETCO_2
If you think patient is painful?

- Deepen anesthetic plane
- Small dose of dexmedetomidine
- Local anesthetic
 - “splash”
 - Intracavitary administration
Conclusions

• Attentive monitoring can catch problems early and avoid catastrophe
• Trends are important
• Need to respond to values outside normal range
• Minimum requirements:
 – Anesthesia record, Pulse Oximeter, temperature, blood pressure if procedure > 20 min
Questions